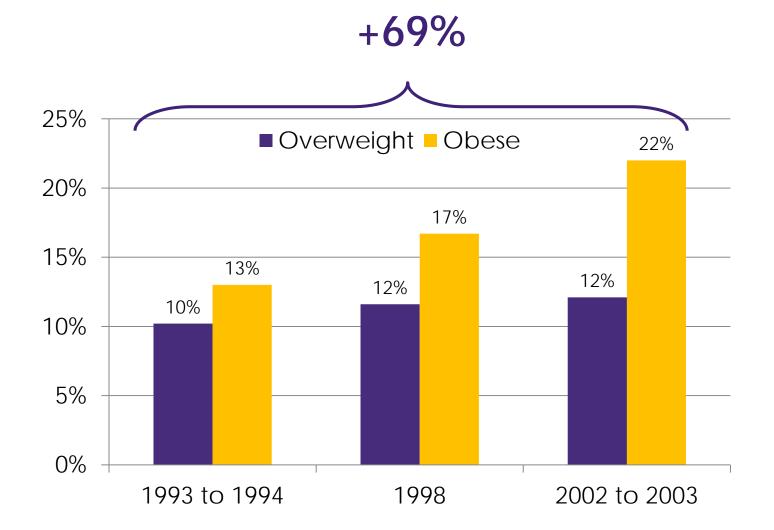
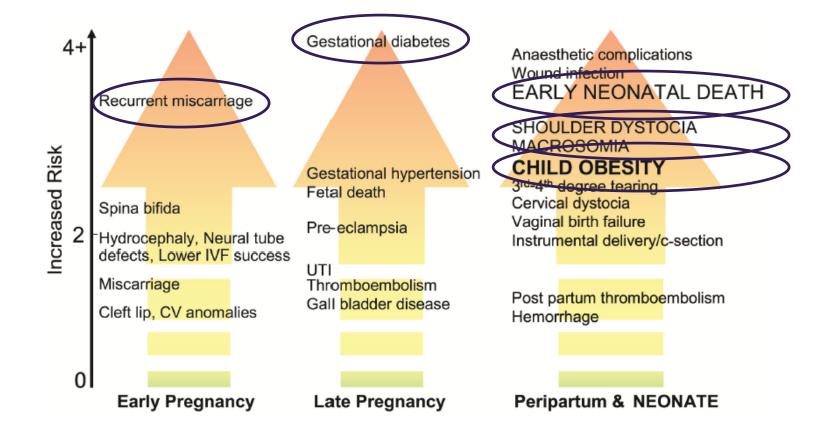


The prevalence of obesity and of excessive weight gain during pregnancy and their impact on maternal outcomes (gestational diabetes, caesarian rates, maternal complications) and child health (infant size at birth, obesity and diabetes rates in childhood and adulthood)


Obesity is on the rise in America

PENNINGTON

Maternal overweight and obesity are also increasing

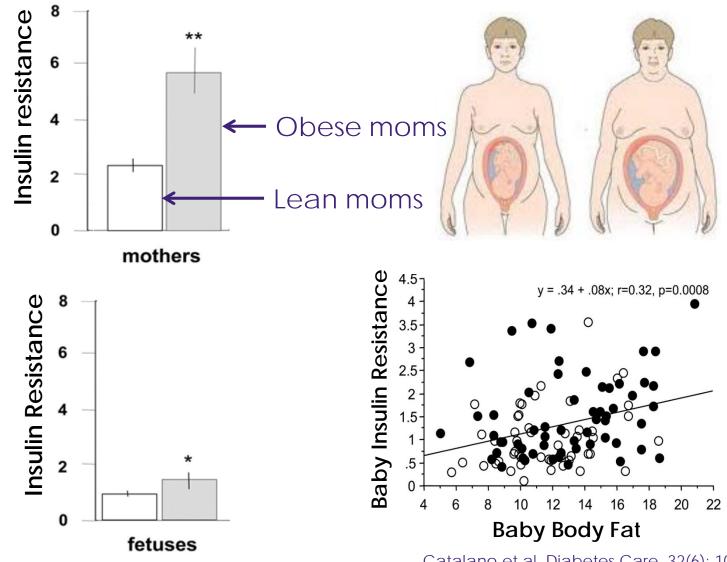


Kim et al., J. Clin Invest. 2007; 117: 2621-2637

Risks associated with overweight or obese pregnancies

Adamo et al. 2012, Int. J. Environ. Res. Public Health, 9, 1263-1307

Increased adiposity in offspring of overweight & obese mothers


	Normal weight (n=210)	Overweight (n=59)	Obese (n=37)
Weight at birth (g)	3208.8 ± 422.6	3554.3 ± 559.9	3323.2 ± 392.3
Neonatal fat (%)	11.7 ± 4.1	$13.0 \pm 4.7^{*}$	$14.6 \pm 4.3^{*}$

>14% fat for neonates is considered obese

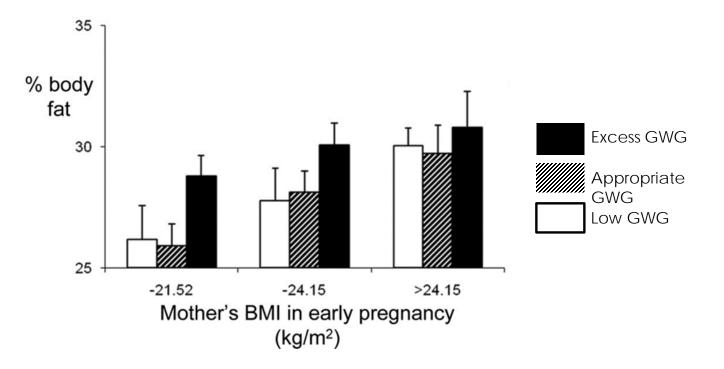
Hull et al., Am J Obstet Gynecol. 2012; 205: 1-7

Neonatal adiposity already is associated with insulin resistance

Catalano et al. Diabetes Care, 32(6): 1076-80, 2009

Babies born with high body fat continue on this trajectory as kids

Perinatal risk factors for childhood obesity and metabolic dysregulation $^{\rm 1-3}$


Patrick M Catalano, Kristen Farrell, Alicia Thomas, Larraine Huston-Presley, Patricia Mencin, Sylvie Hauguel de Mouzon, and Saeid B Amini Am J Clin Nutr 2009;90:1303-1313

Maternal Pregravid BMI & GWG associated with adiposity in adult offspring

Adults children aged 30 years!

N=276 men and women Body fat measured at 30 years of age

How can we improve maternal (and paternal) health before pregnancy?

Good Question!

- 50% of pregnancies in the US, are unplanned
- Many adults (and clinicians) fail to recognize/acknowledge obesity
- When couples plan for children, their health (unless there are infertility issues), is often far from their minds.

Any evidence for improved outcomes with pregravid interventions?

Systematic review and meta-analysis of the impact of preconception lifestyle interventions on fertility, obstetric, fetal, anthropometric and metabolic outcomes in men and women

L. Lan^{1,2}, C.L. Harrison², M. Misso², B. Hill³, H.J. Teede^{1,2}, B.W. Mol⁴, and L.J. Moran^{2,4,*}

a)	Lifestyle	intervent	ion	Stand	ard care			Mean difference	Mean di	fference	
Study or Subgroup	Mean [kg]	SD [kg]	Total	Mean [kg]	SD [kg]	Total	Weight	IV, Random, 95% CI [kg]	IV, Random	, 95% CI [kg]	
Moran 2011	-3.8	3	18	-0.5	1.2	20	29.8%	-3.30 [-4.78, -1.82]	_		
Mutsaerts 2016	-4.4	5.8	236	-1.1	4.3	128	59.4%	-3.30 [-4.35, -2.25]			
Sim 2014	-6.6	4.6	26	-1.6	3.6	17	10.8%	-5.00 [-7.46, -2.54]			
Total (95% CI)			280			165	100.0%	-3.48 [-4.29, -2.67]	+		
Heterogeneity: Tau ² =	0.00; Chi ² = 1	1.64, df = 2	(P = 0.4)	4); / ² = 0%							
Test for overall effect:	Z = 8.44 (P <	0.00001)						-10	-5	0 5	
									Favours lifestyle	Favours standard	care

Any evidence for improved outcomes with pregravid interventions?

Systematic review and meta-analysis of the impact of preconception lifestyle interventions on fertility, obstetric, fetal, anthropometric and metabolic outcomes in men and women

L. Lan^{1,2}, C.L. Harrison², M. Misso², B. Hill³, H.J. Teede^{1,2}, B.W. Mol⁴, and L.J. Moran^{2,4,*}

Outcome	Study	Results
Premature Birth (<37 weeks gestation)	Lumley and Donohue (2006), Sim et al. (2014), Mutsaerts et al. (2016)	MA: OR 1.06 [95% CI:0.53–2.12] $P = 0.87 I^2 = 40\%$
Pregnancy loss	Legro et al. (2015), Sim et al. (2014), Mutsaerts et al. (2016)	MA: OR 1.43 [95% CI:0.89–2.30] P = 0.14 I ² = 2%
Pre-eclampsia	Sim et al. (2014), Mutsaerts et al. (2016)	MA: OR 0.92 [95% CI: 0.39–2.13] P = 0.84 l ² = 0%
Gestational diabetes	Sim et al. (2014), Mutsaerts et al. (2016)	MA: OR 0.39 [95% CI: 0.05–3.24] P = 0.39 l ² = 47%
Adverse ART outcomes	Mutsaerts et al. (2016)	Intervention: 1.7%. Control: 1.3% (P-value not available)
Gestational weight gain ^α	Hillemeier et al. (2008), Weisman et al. (2011)	Intervention: 10.6 kg [95% CI: 7.49–13.74] Control: 18.8 kg [95% CI: 13.11–24.40] P = 0.023 in favor of intervention
Delivery complications	Mutsaerts et al. (2016)	Intervention: 22.8%. Control: 15% (P-value not available)

Human Reproduction, 32(9): 1925-1940, 2017

Any evidence for improved outcomes with pregravid interventions?

Systematic review and meta-analysis of the impact of preconception lifestyle interventions on fertility, obstetric, fetal, anthropometric and metabolic outcomes in men and women

L. Lan^{1,2}, C.L. Harrison², M. Misso², B. Hill³, H.J. Teede^{1,2}, B.W. Mol⁴, and L.J. Moran^{2,4,*}

Table VI Fetal outcomes.				
Outcome	Study	Results		
Live birth	Legro et al. (2015), Moran et al. (2011b), Sim et al. (2014), Mutsaerts et al. (2016)	MA: OR 1.88 [95% CI: 0.63–5.58] P = 0.26 I ² = 79%		
Birth weight	Lumley and Donohue (2006), Legro et al. (2015)	MA: Mean difference – 197.0 g [95% Cl: –501.91–107.90] P = 0.21 l ² = 56%		
	Mutsaerts et al. (2016)	Intervention: 3312 g (IQR: 3198–3426) Control: 3341 g (IQR: 3234–3448) RR: –29 [98% CI: –185–27]		
Neonatal mortality	Sim et al. (2014), Mutsaerts et al. (2016)	MA: OR 0.14 [95% CI: 0.01–1.37] P = 0.09 I ² = 0%		
Congenital abnormalities	Mutsaerts et al. (2016)	Intervention: 3.1%. Control 3.1%. RR: 0.69 [95% CI: 0.17–2.88]		

¹, median weight; IQR, interquartile range

Human Reproduction, 32(9): 1925-1940, 2017